Studiengang:	
B.Sc. Maschinenbau und Produktion	
B.Sc. Maschinenbau und Produktion (dual)	
B.Sc. Maschinenbau / Energie- und Anlagensysteme	
B.Sc. Maschinenbau / Entwicklung und Konstruktion	
B.Sc. Produktionstechnik und -management	
_	Angewandte Informatik
	Applied Computer Science
Modulkennziffer	AINF
Modulkoordination/ Modulverantwortliche/r	Herr Prof. Dr. Ivo Nowak
Dauer des Moduls/ Semester/	1 Semester/ 3. Semester/ jedes Semester
Angebotsturnus	1 Semester/ 3. Semester/ jedes Semester
Leistungspunkte(LP)/	6 LP/ 6.00 SWS
Semesterwochenstunden(SWS)	
Art des Moduls,	Pflichtfach im Kernstudium
Verwendbarkeit des Moduls	
Arbeitsaufwand (Workload)	Präsenzstudium 102 h und Selbststudium 78 h
Taile	(17 Semesterwochen, 1 SWS = 60 min)
Teilnahmevoraussetzungen/ Vorkenntnisse	Empfohlen: Mathematik 1+2, Experimentalphysik, Technische Mechanik 1+2
	Regelhafte Lehrsprache: Deutsch Weitere mögliche Lehrsprache: Englisch
Lehrsprache	Bei mehr als einer möglichen Lehrsprache im Modul wird die zu erbringende
	Lehrsprache von dem bzw. der verantwortlichen Lehrenden zu Beginn der
	Lehrveranstaltung bekannt gegeben.
Zu erwerbende Kompetenzen/	Die Studenten können
Lernergebnisse	- durch ein umfassendes Verständnis der Problemstellungen und Grundlagen
	der Informatik Ingenieuranwendungen effizient einsetzen und deren
	Entwicklung sachkundig begleiten
	- die Grundprinzipien höherer Programmiersprachen und der
	Softwareentwicklung zur Lösung komplexer Ingenieursprobleme anwenden
	- algorithmische Lösungen für einfache Ingenieursprobleme eigenständig
	konzipieren und in einer höheren Programmiersprache implementieren
	- Kenntnisse der Softwareentwicklung in weiterführenden Veranstaltungen
	anwenden
Inhalte des Moduls	Grundlagen der Informatik für Ingenieure und Programmiersprachen
	2. Funktionen und Ablaufstrukturen
	3. Objektorientierte Softwareentwicklung
	4. Effiziente Datenstrukturen
	5. Algorithmen
	6. Signale und Bilder
	7. Anwendungen: z. B. Numerik, Statistik, Differentialgleichungen
Voraussetzungen für die	Regelhafte Prüfungsform für die Modulprüfung: Klausur (PL)
Vergabe von Leistungspunkten	Weitere mögliche Prüfungsformen: Mdl. Prüfung
(Studien- und	Laborpraktikum: Laborabschluss (SL)
Prüfungsleistungen)	Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende
	Prüfungsform von dem bzw. der verantwortlichen Lehrenden zu Beginn der
	Lehrveranstaltung bekannt gegeben.
Lehr- und Lernformen/	Seminaristischer Unterricht (4,5 SWS)
Methoden/ Medienformen	Tafel, Beamer, PC, Vorlesung, Übungen
	Laborpraktikum (1,5 SWS)

Stein, Programmieren mit MATLAB, Hanser
Stein, Objektorientierte Programmierung mit MATLAB, Hanser
Weigend, Python 3 - Lernen und professionell anwenden, mitp
Gumm, Sommer, Einführung in die Informatik, Oldenbourg
Herold, Lurz, Wohlrab, Grundlagen der Informatik, Pearson