Studiengang: B.Sc. Maschinenbau und Produktion

B.Sc. Maschinenbau und Produktion (dual)
B.Sc. Maschinenbau / Entwicklung und Konstruktion

B.Sc. Maschinenbau / Entwicklung und Konstruktion	
Modulbezeichnung / Titel	Leichtbau
	∟ightweight Structures
Modulkennziffer	LEB
Modulkoordination/	Herr Prof. Dr. Felix Kruse
Modulverantwortliche/r	
Dauer des Moduls/ Semester/	1 Semester/ 5. oder 6. Semester, im dualen Studiengang 6. oder 7. Semester/
Angebotsturnus	jährliches Angebot
Leistungspunkte(LP)/	5 LP/ 4.00 SWS
Semesterwochenstunden(SWS)	
Art des Moduls,	Wahlpflichtfach in den Studienrichtungen Digital Engineering and Mobility und
Verwendbarkeit des Moduls	Entwicklung und Konstruktion
	Wahlpflichtfach in den Studienschwerpunkten
	- Berechnung
	- Konstruktion energetischer Anlagen
	- Mikromobilität
	Wahlpflichtfach im Studiengang Maschinenbau / Entwicklung und Konstruktion
Arbeitsaufwand (Workload)	Präsenzstudium 68 h und Selbststudium 82 h
, ,	(17 Semesterwochen, 1 SWS = 60 min)
Teilnahmevoraussetzungen/	Fehlen Prüfungs- oder Studienleistungen des 1. und 2. Semesters, können
Vorkenntnisse	keine Prüfungsleistungen ab dem 5. Semester abgelegt werden.
	Empfohlen: TM 1, TM2, Werkstoffkunde und Chemie, Konstruktion A,
	Konstruktion B, Finite Elemente bzw. Finite-Elemente-Methode
Lehrsprache	Regelhafte Lehrsprache: Deutsch Weitere mögliche Lehrsprache: Englisch
	Bei mehr als einer möglichen Lehrsprache im Modul wird die zu erbringende
	Lehrsprache von dem bzw. der verantwortlichen Lehrenden zu Beginn der
	Lehrveranstaltung bekannt gegeben.
Zu erwerbende Kompetenzen/	Fachlich-inhaltliche und methodische Kompetenzen: Studierende können
Lernergebnisse	Leichtbaukonstruktionen entwerfen, berechnen und beurteilen. Sie verfügen
	über fundiertes Grundlagenwissen zu Versagensmechanismen von
	dünnwandigen Konstruktionen
	Sozialkompetenzen: durch bearbeiten von Problemen in Kleingruppen wird die
	Teamfähigkeit weiterentwickelt.
Inhalte des Moduls	Einleitung
	Versagensarten: Festigkeit, Stabilität, Ermüdung
	Leichtbauweisen und Gestaltungsprinzipien
	Werkstoffe für den Leichtbau
	Elastizitätstheoretische Grundlagen
	Dünnwandige Stäbe (Zug, Biegung, Querkraft, Schubmittelpunkt, Torsion
	offener und geschlossener Profile, Wölbkrafttorsion)
	Leichtbauidealisierungen (Schubfeldtheorie, Schubwandträger-Profile)
	Sandwichelemente (Aufbau, Werkstoffe, Kernvarianten, Versagensarten)
	Stabilitätsverlust (Balken: Knicken, Biegedrillknicken, Plattenbeulen, lokales
	Beulen dünnwandiger Stäbe, Schalenbeulen)
	Versteifungen
	Verbindungstechnik
	l

Voraussetzungen für die	Regelhafte Prüfungsform für die Modulprüfung: Klausur (PL)
Vergabe von Leistungspunkten	Weitere mögliche Prüfungsformen: Mdl. Prüfung
(Studien- und	Laborpraktikum: Laborabschluss (SL)
Prüfungsleistungen)	Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende
	Prüfungsform von dem bzw. der verantwortlichen Lehrenden zu Beginn der
	Lehrveranstaltung bekannt gegeben.
Lehr- und Lernformen/	seminaristischer Unterricht (3SWS):
Methoden/ Medienformen	PC, Beamer (Lehrender), Tafel
	Labor:praktikum (1 SWS):
	PC (Teilnehmer), PC, Beamer (Laborleiter), FEM-Software: z.B. ANSYS
Literatur	Skript
	B. Klein, Leichtbau, Vieweg Verlag.
	J. Wiedemann, Leichtbau, Springer Verlag.