Studiengang:		
B.Sc. Maschinenbau und Produktion		
B.Sc. Maschinenbau und Produktion (dual)		
B.Sc. Maschinenbau / Energie- und Anlagensysteme		
B.Sc. Maschinenbau / Entwicklung und Konstruktion		
B.Sc. Produktionstechnik und -management		
B.30. I Todaktionsteerinik und -management		
Modulbezeichnung / Titel	Mathematik 2	
Module name / title (engl.)	Mathematics 2	
Modulkennziffer	MAT-2	
Modulkoordination/	Herr Prof. Dr. Ulf Teschke	
Modulverantwortliche/r		
Dauer des Moduls/ Semester/	1 Semester/ 2. Semester/ jedes Semester	
Angebotsturnus	,	
Leistungspunkte(LP)/	5 LP/ 5.00 SWS	
Semesterwochenstunden(SWS)		
Art des Moduls,	Pflichtfach im Kernstudium	
Verwendbarkeit des Moduls		
Arbeitsaufwand (Workload)	Präsenzstudium 85 h und Selbststudium 65 h	
	(17 Semesterwochen, 1 SWS = 60 min)	
Teilnahmevoraussetzungen/		
Vorkenntnisse		
Lehrsprache	Regelhafte Lehrsprache: Deutsch Weitere mögliche Lehrsprache: Englisch	
	Bei mehr als einer möglichen Lehrsprache im Modul wird die zu erbringende	
	Lehrsprache von dem bzw. der verantwortlichen Lehrenden zu Beginn der	
	Lehrveranstaltung bekannt gegeben.	
Zu erwerbende Kompetenzen/	Die Studierenden können	
Lernergebnisse	partielle Ableitungen, Extremwerte und Integrale von Funktionen von	
Lernergebinsse	mehreren unabhängigen Veränderlichen berechnen	
	• Flächen, Volumen, Schwerpunkte, Flächen- und Massenträgheitsmomente	
	von einfachen Geometrischen Körpern in kartesischen, Polar- und	
	Zylinderkoordinaten berechnen	
	vektoranalytische Fragestellungen mehrdimensionaler Skalar- und	
	Vektorfelder analysieren und berechnen, sie können Linien- und	
	· · · · · · · · · · · · · · · · · · ·	
	Oberflächenintegrale bestimmen und kennen einfache physikalische	
	Anwendungen dieser Berechnungsverfahren	
	• gewöhnliche Differentialgleichungen klassifizieren und einfache DGLs lösen,	
	sie beherrschen die Lösungen der Schwingungsgleichung und kennen die	
	zugehörigen physikalischen Bedeutungen	
	einfache statistische Verfahren anwenden und beherrschen einfache	
	Regressionsmethoden.	
	Die Studierenden sind in der Lage auch komplexe ingenieurwissenschaftliche	
	Fragestellungen mit Methoden der höheren Mathematik zu lösen und	
	nachvollziehbar darzustellen. Ihnen ist dabei die Rolle der höheren	
	Mathematik zur Lösung ingenieurwissenschaftlicher und	
	naturwissenschaftlicher Frage bewusst. Durch das angebotene Tutorium	
	werden die Studierenden zur Teamarbeit motiviert.	

Inhalte des Moduls	Funktionen von mehreren unabhängigen Veränderlichen:
illiano aco illoudio	Partielle Ableitung, Extremwerte, totales Differential, Bestimmung der
	Tangentialebene, Mehrfachintegrale, Berechnung von Flächen, Volumen,
	Schwerpunkten, Flächen- und Massenträgheitsmomenten,
	Variablentransformationen
	Vektoranalysis: Differentialgeometrie: Parameterdarstellung von Kurven,
	Krümmung, Parameterdarstellung von Kurven und Flächen,
	Vektordifferentialoperatoren, Linienintegral, Oberflächenintegral, Satz von
	Gaus, Satz von Stokes
	Gewöhnliche Differentialgleichungen: Trennung der Veränderlichen,
	Differentialgleichung 1. Ordnung, lineare Differentialgleichung 2. Ordnung,
	Schwingungsgleichung, Systeme linearer Differentialgleichungen 1. Ordnung,
	Klassifikation partieller Differenzialgleichungen 2. Ordnung,
	• Fehler- und Ausgleichsrechnung: Mittelwert, Standardabweichung, Varianz,
	Fehler des Mittelwertes, Fehlerfortpflanzung, Regression, Korrelation,
	Normalverteilung, Häufigkeit- und Wahrscheinlichkeitsverteilung
Voraussetzungen für die	Regelhafte Prüfungsform für die Modulprüfung: Klausur (PL)
Vergabe von Leistungspunkten	Weitere mögliche Prüfungsformen: Mündliche Prüfung
(Studien- und	Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende
Prüfungsleistungen)	Prüfungsform von dem bzw. der verantwortlichen Lehrenden zu Beginn der
	Lehrveranstaltung bekannt gegeben.
Lehr- und Lernformen/	Seminaristischer Unterricht 4SWS,
Methoden/ Medienformen	Übung 1SWS,
	Tafel, Beamer, Praxisbeispiele, vereinzelte Präsentationen mit Numerik- Software (z.B. Matlab)
Literatur	L. Papula, Mathematik für Ingenieure und Naturwissenschaftler, Band 2+3,
	Vieweg Verlag
	L. Papula, Mathematische Formelsammlung für Ingenieure, Vieweg Verlag
	L. Papula: Klausur- und Aufgabensammlung, Vieweg Verlag
	P. Stingl: Mathematik für Fachhochschulen, Hanser Verlag
	T. Westermann: Mathematik für Ingenieure, Springer Verlag
	I. N. Bronstein, K. A. Semendjaew u. G. Musiol, Taschenbuch der Mathematik, Harri Deutsch Verlag