Studiengang:		
M.Sc. Produktionstechnik und -management		
Modulbezeichnung / Titel	Additive Manufacturing	
_	Additive Manufacturing	
Modulkennziffer	ADDMF	
Modulkoordination/	Herr Prof. Dr. Shahram Sheikhi	
Modulverantwortliche/r		
Dauer des Moduls/ Semester/	1 Semester/ 1. oder 2. Semester/ jährlich	
Angebotsturnus		
Leistungspunkte(LP)/	5 LP/ 3.00 SWS	
Semesterwochenstunden(SWS)		
Art des Moduls,	Wahlpflichtmodul im studiengangsspezifischen Angebot	
Verwendbarkeit des Moduls		
Arbeitsaufwand (Workload)	Präsenzstudium 51 h und Selbststudium 99 h	
	(17 Semesterwochen, 1 SWS = 60 min)	
Teilnahmevoraussetzungen/	,	
Vorkenntnisse		
Lehrsprache	Regelhafte Lehrsprache: Deutsch Weitere mögliche Lehrsprache: Englisch	
	Bei mehr als einer möglichen Lehrsprache im Modul wird die zu erbringende	
	Lehrsprache von dem bzw. der verantwortlichen Lehrenden zu Beginn der	
	Lehrveranstaltung bekannt gegeben.	
Zu erwerbende Kompetenzen/	Die Studierenden werden in die Lage versetzt verschiedene Verfahren des	
Lernergebnisse	metallischen 3D-Drucks eigenständig erläutern und deren Vor- und Nachteile	
	im Bereich der Fertigung diskutieren zu können. Sie kennen Möglichkeiten	
	und Strategien um aus einer Idee eine gedruckte Komponente zu fertigen. Sie	
	werden in der Lage versetzt die Besonderheiten des 3D-Drucks beim	
	Generieren eines Bauteils zu berücksichtigen und zu begründen. Die	
	Studierenden können Methoden der Qualitätssicherung anwenden um eine	
	Reproduzierbare Qualität zu gewährleisten. Dabei kennen sie die wichtigsten	
	Parameter die einen Einfluss auf die Qualität ausüben. Sie werden in der Lage	
	versetzt roboterbasiert zu drucken und können erforderliche Strategien zur	
	Erzeugung eines Programmcodes umsetzen. Hierbei können die	
	Studierenden sowohl die sprachbezogene Programmierung als auch die CAD-	
	Bezogene Programmerstellung anwenden, erläutern und begründen. Sie	
	kennen Strategien zur Optimierung von Topologien und können diese	
	interpretieren. Ferner sind sie in der Lage die Mikrostruktur der Bauteile zu	
	prüfen und zu bewerten und kennen Strategien um erforderliche	
	Oberflächeneigenschaften der gedruckten Bauteile einstellen zu können.	
	Somit verfügen sie über folgende Kompetenzen:	
	• Betrachtung umfassender Prozessketten für additiv hergestellte Bauteile, die	
	neben den additiven Prozessen und den dafür verwendeten Anlagen auch	
	vor- und nachgelagerte Prozesse einbeziehen.	
	Zusatzwerkstoffe, -handling, Materialfluss, Qualitätsmanagement und	
	Prozessüberwachung sowie Wirtschaftlichkeit	
	Beurteilung der Eigenschaften von gedruckten Komponenten	
	Einsatz von Robotern im 3D-Druck	
	Gestaltung der Prozessketten und Konstruktion für AM	
	Die Studierenden werden in kleinen Gruppen Bauteile konstruieren,	
	optimieren und drucken. Dabei werden die verschiedenen Verfahren	
	eingesetzt und das Ergebnis präsentiert und diskutiert.	

Inhalte des Moduls	Verschiedene Verfahren zur metallischen additiven Fertigung, Datenverarbeitung, Programmierung von Robotern im Bereich der
	Schweißtechnik, CAD-Modelle für den 3D-Druck mit dem Roboter,
	werkstoffkundliche Aspekte, Bewertung der Komponente,
	Topologieoptimierung, Qualitätssicherung.
	Ferner werden Themen des Arbeitsschutzes sowie der Abfallbehandlung
	behandelt.
Voraussetzungen für die	Seminaristischer Unterricht: Regelhafte Prüfungsform für die Modulprüfung:
Vergabe von Leistungspunkten	Klausur (PL)
(Studien- und	Weitere mögliche Prüfungsformen: Hausarbeit oder mündliche Prüfung
Prüfungsleistungen)	Laborpraktikum:Laborabschluss (SL)
	Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende
	Prüfungsform von dem bzw. der verantwortlichen Lehrenden zu Beginn der
	Lehrveranstaltung bekannt gegeben.
Lehr- und Lernformen/	Seminaristischer Unterricht 2LVS
Methoden/ Medienformen	Laborpraktikum 1LVS
	Tafelanschrieb, Multimedia-Präsentationen, Demonstrationsversuche
Literatur	Literatur:
	Methodik und Richtlinien für die Konstruktion von laseradditiv gefertigten
	Leichtbaustrukturen / Jannis Kranz Berlin, Heidelberg : Springer Berlin Heidelberg, 2017
	2. Additive Manufacturing Quantifiziert : Visionäre Anwendungen und Stand der Technik / Roland Lachmayer Berlin, Heidelberg : Springer Berlin Heidelberg, 2017
	3. Industrialisierung der Additiven Fertigung : digitalisierte Prozesskette - von der Entwicklung bis zum einsetzbaren Artikel / Helmut Zeyn 1. Auflage Berlin : Beuth, 2017
	4. Praxiswissen Schweißtechnik; Werkstoffe Prozesse Fertigung; Hans J. Fahrenwaldt; Springer Vieweg