Course of study/ focus of study: M.Sc. Nachhaltige Energiesysteme im Maschinenbau

Module name / title	Electrochemical Energy Conversion / Fuel Cell Systems (engl.)
Module number	FCSYS
Module coordinator/ person	Herr Prof. Dr. Achim Schmidt
responsible	
Duration of the module/	1 Semester/ first or second semester/ annually
semester/ frequency	
Credits (CP)/ semester hours	5 LP/ 3.00 SWS
per week (SHW)	
Type of module .	Course-specific elective module
Applicability of the module	
Workload	Contact hours: 51 h and Self-study: 99 h
TO NOU	(Basis: 17 semester weeks (incl. even time), $1 \text{ SHW} = 60 \text{ minutes}$)
Module proroquisites	Recommended: Thermodynamics I/II. Knowledge of Matlab/SIMULINK
Beguirements for perticipation/	
previous knowledge	
i eaching language	i eaching language: English Alternate teaching language: German
	If there is more than one teaching language, the used teaching language will
	be announced by the lecturer.
Competencies gained/	Different energy conversion techniques and storage methods can be named
Learning Outcome	Major fuel cell types and their distinctions can be explained
	The fundamentals of electrochemical energy storage/conversion
	(electrochemical reactions) can be applied
	Electrochemical as well as thermodynamic basics can be explained with an
	example
	Requirements for electrochemical systems can be analysed and evaluated
	(stationary as well as mobile applications)
	Dynamic model-based balances for electrochemical conversion can be
	by famic moder based balances for electrochemical conversion can be
	periornieu Oustem integration of electro, chemical conversion techniques con he
	System integration of electro-chemical conversion techniques can be
	designed
	Complex energy systems and their interactions can be calculated and
	evaluated dynamically with numerical tools, e.g. Simulink/MatLab
	The need for renewable energies as well as for energy storage is understood

Content of the module	1. General basics/introduction
	2. Principles of energy conversion and storage
	3. Introduction to physical chemistry
	a. Reversible electro-chemical reaction
	b. Gibbs enthalpy, Fundamental equation of thermodynamics
	c. Nernst equation
	d. Irreversibilities, overvoltages
	e. Butler-Volmer equation, Kinetics of the electrodes
	4. Applications
	a. Fuel Cell stacks
	i. Requirements
	ii. Technologies
	b. Batteries
	i. Requirements
	II. From cell to stack
	5. System evaluation
	a. Dynamic application (e-Mobility)
	b. Design of a Simulink model including interfaces of all relevant sub-systems
	c. Energetic evaluation, Energy Management System (EMS), Control
	Strategies
	0. Laboratory (Simuliak)
	a. Case study. Fuel-cell vehicle with Li-ton storage for energy recuperation
	h Dynamic system simulation
	b. Dynamic system simulation
Requirements for the award of	Regular examination type for module testing: Written exam (PL)
credit points	Further possible examination types: oral exam, portfolio assessment
(Study and exam	Laboratory internship: Laboratory degree (SL)
requirements)	Where more than one possible examination type is used in the module, the
	examination type to be used is to be made known by the responsible lecturer
	at the start of the course.
Learning and teaching types/	2 LVS lecture (Black board, slides, projector)
methods/ media types	1 LVS laboratory (Computer)
Literature	P. Kurzweil: Elektrochemische Speicher. Springer (2015)
	1. Reddy: Linden's Handbook of Batteries. McGrawHill (2011)
	M. Sterner, I. Stadler: Energiespeicher. Springer (2014)
	A. Jossen, W. Weydanz: Moderne Akkumulatoren richtig eingesetzt. Inge
	Reichardt Verlag (2006)
	vDi Warmeatlas. Springer Verlag (2006)