Studiengang:		
M.Sc. Nachhaltige Energiesysteme im Maschinenbau		
Modulbezeichnung / Titel	Elektrotechnik in nachhaltigen Energiesystemen	
Module name / title (engl.)	Electrical Engineering in Sustainable Energy Systems	
Modulkennziffer	ETNE	
Modulkoordination/	Frau Prof. Dr. Birgit Koeppen	
Modulverantwortliche/r		
Dauer des Moduls/ Semester/	1 Semester/ 1. oder 2. Semester/ jährlich	
Angebotsturnus		
Leistungspunkte(LP)/	5 LP/ 3.00 SWS	
Semesterwochenstunden(SWS)		
Art des Moduls,	Wahlpflichtmodul im studiengangsspezifischen Angebot	
Verwendbarkeit des Moduls		
Arbeitsaufwand (Workload)	Präsenzstudium 51 h und Selbststudium 99 h	
Tailnahmayarayaaafayaray	(17 Semesterwochen, 1 SWS = 60 min)	
Teilnahmevoraussetzungen/ Vorkenntnisse	Empfohlen: Grundlagen der Elektrotechnik, Elektrische Antriebstechnik,	
Lehrsprache	Mess-, Steuerungs- und Regelungstechnik Regelhafte Lehrsprache: Deutsch Weitere mögliche Lehrsprache: Englisch	
Leili Spiacile	Bei mehr als einer möglichen Lehrsprache im Modul wird die zu erbringende	
	Lehrsprache von dem bzw. der verantwortlichen Lehrenden zu Beginn der	
	Lehrveranstaltung bekannt gegeben.	
Zu erwerbende Kompetenzen/	Die/der Studierende kann die wesentlichen Zusammenhänge,	
Lernergebnisse	Wirkungsweisen und Verfahren elektrotechnischer Systeme und Subsysteme	
Lernergebinsse	in nachhaltigen Energieanlagen verstehen und analysieren. Sie/er ist befähigt,	
	Modelle für Komponenten und Systeme sowie für die Energieübertragung zu	
	entwickeln. Anhand dieser kann sie/er die Integration nachhaltiger	
	Energiesysteme in das elektrische Verbundnetz aus Sicht der	
	maschinenbaulichen Praxis beurteilen.	
Inhalte des Moduls	- Eigenschaften typischer Energieerzeuger, Energieverbraucher und	
	Energiespeicher, insbesondere im Hinblick auf elektrische Komponenten und	
	die Betriebsführung	
	- Anforderungen an die elektrische Energiebereitstellung im elektrischen	
	Verbundnetz, wie Frequenzhaltung und Spannungshaltung	
	- Integration von insbesondere nachhaltigen und volatilen Energieerzeugern in	
	das elektrische Verbundnetz	
	- Modellierung und Berechnung der Energiebereitstellung und	
	Energieübertragung im elektrischen Verbundnetz	
Voraussetzungen für die	Seminaristischer Unterricht: Regelhafte Prüfungsform für die Modulprüfung:	
Vergabe von Leistungspunkten	mündliche Prüfung (PL)	
(Studien- und	Weitere mögliche Prüfungsformen: Hausarbeit, Portfolio Prüfung	
Prüfungsleistungen)	Laborpraktikum: Laborabschluss (SL)	
	Bei mehr als einer möglichen Prüfungsform im Modul wird die zu erbringende	
	Prüfungsform von dem bzw. der verantwortlichen Lehrenden zu Beginn der	
Labor conditions (const.)	Lehrveranstaltung bekannt gegeben.	
Lehr- und Lernformen/	Seminaristischer Unterricht, Lehrvortrag, Laborpraktikum, Selbststudium	
Methoden/ Medienformen		

Literatur	Heuck, K.; Dettmann, KD.; Schulz, D.: Elektrische Energieversorgung –
	Erzeugung, Übertragung und Verteilung elektrischer Energie für Studium und
	Praxis. 9. Aufl. Wiesbaden : Springer Vieweg, 2013
	Quaschning, V.: Regenerative Energiesysteme – Technologie, Berechnung,
	Simulation. 9. Aufl. München : Carl Hanser, 2015
	Weitere Literatur wird im Vorlesungsskript benannt.